140 research outputs found

    Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition

    Get PDF
    The energy band structure of Cu2SnS3 (CTS) thin films fabricated by pulsed laser deposition was studied by photoreflectance spectroscopy (PR). The temperature-dependent PR spectra were measured in the range of T = 10–150 K. According to the Raman scattering analysis, the monoclinic crystal structure (C1c1) prevails in the studied CTS thin film; however, a weak contribution from cubic CTS (F-43m) was also detected. The PR spectra revealed the valence band splitting of CTS. Optical transitions at EA = 0.92 eV, EB = 1.04 eV, and EC = 1.08 eV were found for monoclinic CTS at low-temperature (T = 10 K). Additional optical transition was detected at EAC = 0.94 eV, and it was attributed to the low-temperature band gap of cubic CTS. All the identified optical transition energies showed a blueshift with increasing temperature, and the temperature coefficient dE/dT was about 0.1 meV/K

    Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    Get PDF
    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam

    Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles

    Get PDF
    The Centre for the Clinical Application of Particles’ Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions. BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy

    Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions

    Get PDF
    Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam

    Production of bioactive secondary metabolites by marine Vibrionaceae

    Get PDF
    Abstract: Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation

    Versatile tape-drive target for high-repetition rate laser-driven proton acceleration

    Get PDF
    We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers ( >kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources

    Automated control and optimisation of laser driven ion acceleration

    Get PDF
    The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimisation of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimisation. Here, an automated, HRR-compatible system produced high fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimisation of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually-optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimisation of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources

    Automated control and optimisation of laser driven ion acceleration

    Get PDF
    The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimisation of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimisation. Here, an automated, HRR-compatible system produced high fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimisation of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually-optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimisation of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources
    • …
    corecore